Whakaoti mō a
a=\frac{\sqrt{29}+5}{12}\approx 0.865430401
a=\frac{5-\sqrt{29}}{12}\approx -0.032097067
Tohaina
Kua tāruatia ki te papatopenga
6a^{2}-5a-\frac{1}{6}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-\frac{1}{6}\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -5 mō b, me -\frac{1}{6} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-\frac{1}{6}\right)}}{2\times 6}
Pūrua -5.
a=\frac{-\left(-5\right)±\sqrt{25-24\left(-\frac{1}{6}\right)}}{2\times 6}
Whakareatia -4 ki te 6.
a=\frac{-\left(-5\right)±\sqrt{25+4}}{2\times 6}
Whakareatia -24 ki te -\frac{1}{6}.
a=\frac{-\left(-5\right)±\sqrt{29}}{2\times 6}
Tāpiri 25 ki te 4.
a=\frac{5±\sqrt{29}}{2\times 6}
Ko te tauaro o -5 ko 5.
a=\frac{5±\sqrt{29}}{12}
Whakareatia 2 ki te 6.
a=\frac{\sqrt{29}+5}{12}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{29}}{12} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{29}.
a=\frac{5-\sqrt{29}}{12}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{29}}{12} ina he tango te ±. Tango \sqrt{29} mai i 5.
a=\frac{\sqrt{29}+5}{12} a=\frac{5-\sqrt{29}}{12}
Kua oti te whārite te whakatau.
6a^{2}-5a-\frac{1}{6}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6a^{2}-5a-\frac{1}{6}-\left(-\frac{1}{6}\right)=-\left(-\frac{1}{6}\right)
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
6a^{2}-5a=-\left(-\frac{1}{6}\right)
Mā te tango i te -\frac{1}{6} i a ia ake anō ka toe ko te 0.
6a^{2}-5a=\frac{1}{6}
Tango -\frac{1}{6} mai i 0.
\frac{6a^{2}-5a}{6}=\frac{\frac{1}{6}}{6}
Whakawehea ngā taha e rua ki te 6.
a^{2}-\frac{5}{6}a=\frac{\frac{1}{6}}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
a^{2}-\frac{5}{6}a=\frac{1}{36}
Whakawehe \frac{1}{6} ki te 6.
a^{2}-\frac{5}{6}a+\left(-\frac{5}{12}\right)^{2}=\frac{1}{36}+\left(-\frac{5}{12}\right)^{2}
Whakawehea te -\frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{12}. Nā, tāpiria te pūrua o te -\frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{5}{6}a+\frac{25}{144}=\frac{1}{36}+\frac{25}{144}
Pūruatia -\frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{5}{6}a+\frac{25}{144}=\frac{29}{144}
Tāpiri \frac{1}{36} ki te \frac{25}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{5}{12}\right)^{2}=\frac{29}{144}
Tauwehea a^{2}-\frac{5}{6}a+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{12}\right)^{2}}=\sqrt{\frac{29}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{5}{12}=\frac{\sqrt{29}}{12} a-\frac{5}{12}=-\frac{\sqrt{29}}{12}
Whakarūnātia.
a=\frac{\sqrt{29}+5}{12} a=\frac{5-\sqrt{29}}{12}
Me tāpiri \frac{5}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}