Tauwehe
\left(2a-1\right)\left(3a-1\right)
Aromātai
\left(2a-1\right)\left(3a-1\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=-5 pq=6\times 1=6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6a^{2}+pa+qa+1. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
p=-3 q=-2
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6a^{2}-3a\right)+\left(-2a+1\right)
Tuhia anō te 6a^{2}-5a+1 hei \left(6a^{2}-3a\right)+\left(-2a+1\right).
3a\left(2a-1\right)-\left(2a-1\right)
Tauwehea te 3a i te tuatahi me te -1 i te rōpū tuarua.
\left(2a-1\right)\left(3a-1\right)
Whakatauwehea atu te kīanga pātahi 2a-1 mā te whakamahi i te āhuatanga tātai tohatoha.
6a^{2}-5a+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2\times 6}
Pūrua -5.
a=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 6}
Whakareatia -4 ki te 6.
a=\frac{-\left(-5\right)±\sqrt{1}}{2\times 6}
Tāpiri 25 ki te -24.
a=\frac{-\left(-5\right)±1}{2\times 6}
Tuhia te pūtakerua o te 1.
a=\frac{5±1}{2\times 6}
Ko te tauaro o -5 ko 5.
a=\frac{5±1}{12}
Whakareatia 2 ki te 6.
a=\frac{6}{12}
Nā, me whakaoti te whārite a=\frac{5±1}{12} ina he tāpiri te ±. Tāpiri 5 ki te 1.
a=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
a=\frac{4}{12}
Nā, me whakaoti te whārite a=\frac{5±1}{12} ina he tango te ±. Tango 1 mai i 5.
a=\frac{1}{3}
Whakahekea te hautanga \frac{4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6a^{2}-5a+1=6\left(a-\frac{1}{2}\right)\left(a-\frac{1}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te \frac{1}{3} mō te x_{2}.
6a^{2}-5a+1=6\times \frac{2a-1}{2}\left(a-\frac{1}{3}\right)
Tango \frac{1}{2} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6a^{2}-5a+1=6\times \frac{2a-1}{2}\times \frac{3a-1}{3}
Tango \frac{1}{3} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6a^{2}-5a+1=6\times \frac{\left(2a-1\right)\left(3a-1\right)}{2\times 3}
Whakareatia \frac{2a-1}{2} ki te \frac{3a-1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6a^{2}-5a+1=6\times \frac{\left(2a-1\right)\left(3a-1\right)}{6}
Whakareatia 2 ki te 3.
6a^{2}-5a+1=\left(2a-1\right)\left(3a-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}