Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(2a^{2}-a\right)
Tauwehea te 3.
a\left(2a-1\right)
Whakaarohia te 2a^{2}-a. Tauwehea te a.
3a\left(2a-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6a^{2}-3a=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-3\right)±3}{2\times 6}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
a=\frac{3±3}{2\times 6}
Ko te tauaro o -3 ko 3.
a=\frac{3±3}{12}
Whakareatia 2 ki te 6.
a=\frac{6}{12}
Nā, me whakaoti te whārite a=\frac{3±3}{12} ina he tāpiri te ±. Tāpiri 3 ki te 3.
a=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
a=\frac{0}{12}
Nā, me whakaoti te whārite a=\frac{3±3}{12} ina he tango te ±. Tango 3 mai i 3.
a=0
Whakawehe 0 ki te 12.
6a^{2}-3a=6\left(a-\frac{1}{2}\right)a
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te 0 mō te x_{2}.
6a^{2}-3a=6\times \frac{2a-1}{2}a
Tango \frac{1}{2} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6a^{2}-3a=3\left(2a-1\right)a
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.