Whakaoti mō a
a=2
Tohaina
Kua tāruatia ki te papatopenga
7a+1=5\left(a+1\right)
Pahekotia te 6a me a, ka 7a.
7a+1=5a+5
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te a+1.
7a+1-5a=5
Tangohia te 5a mai i ngā taha e rua.
2a+1=5
Pahekotia te 7a me -5a, ka 2a.
2a=5-1
Tangohia te 1 mai i ngā taha e rua.
2a=4
Tangohia te 1 i te 5, ka 4.
a=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
a=2
Whakawehea te 4 ki te 2, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}