Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
60-2\times 4x-4=6x+35
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10,2.
60-8x-4=6x+35
Whakareatia te -2 ki te 4, ka -8.
56-8x=6x+35
Tangohia te 4 i te 60, ka 56.
56-8x-6x=35
Tangohia te 6x mai i ngā taha e rua.
56-14x=35
Pahekotia te -8x me -6x, ka -14x.
-14x=35-56
Tangohia te 56 mai i ngā taha e rua.
-14x=-21
Tangohia te 56 i te 35, ka -21.
x=\frac{-21}{-14}
Whakawehea ngā taha e rua ki te -14.
x=\frac{3}{2}
Whakahekea te hautanga \frac{-21}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}