6 - [ 8 \frac { 3 } { 5 } - 1.2 \times ( \frac { 2 } { 3 } + 1.5 ) + 2 \frac { 1 } { 2 } \times 16 \% ] + 4 =
Aromātai
3.6
Tauwehe
\frac{2 \cdot 3 ^ {2}}{5} = 3\frac{3}{5} = 3.6
Tohaina
Kua tāruatia ki te papatopenga
6-\left(\frac{40+3}{5}-1.2\left(\frac{2}{3}+1.5\right)+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Whakareatia te 8 ki te 5, ka 40.
6-\left(\frac{43}{5}-1.2\left(\frac{2}{3}+1.5\right)+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Tāpirihia te 40 ki te 3, ka 43.
6-\left(\frac{43}{5}-1.2\left(\frac{2}{3}+\frac{3}{2}\right)+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Me tahuri ki tau ā-ira 1.5 ki te hautau \frac{15}{10}. Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
6-\left(\frac{43}{5}-1.2\left(\frac{4}{6}+\frac{9}{6}\right)+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{2}{3} me \frac{3}{2} ki te hautau me te tautūnga 6.
6-\left(\frac{43}{5}-1.2\times \frac{4+9}{6}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Tā te mea he rite te tauraro o \frac{4}{6} me \frac{9}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
6-\left(\frac{43}{5}-1.2\times \frac{13}{6}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Tāpirihia te 4 ki te 9, ka 13.
6-\left(\frac{43}{5}-\frac{6}{5}\times \frac{13}{6}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Me tahuri ki tau ā-ira 1.2 ki te hautau \frac{12}{10}. Whakahekea te hautanga \frac{12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6-\left(\frac{43}{5}-\frac{6\times 13}{5\times 6}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Me whakarea te \frac{6}{5} ki te \frac{13}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
6-\left(\frac{43}{5}-\frac{13}{5}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Me whakakore tahi te 6 i te taurunga me te tauraro.
6-\left(\frac{43-13}{5}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Tā te mea he rite te tauraro o \frac{43}{5} me \frac{13}{5}, me tango rāua mā te tango i ō raua taurunga.
6-\left(\frac{30}{5}+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Tangohia te 13 i te 43, ka 30.
6-\left(6+\frac{2\times 2+1}{2}\times \frac{16}{100}\right)+4
Whakawehea te 30 ki te 5, kia riro ko 6.
6-\left(6+\frac{4+1}{2}\times \frac{16}{100}\right)+4
Whakareatia te 2 ki te 2, ka 4.
6-\left(6+\frac{5}{2}\times \frac{16}{100}\right)+4
Tāpirihia te 4 ki te 1, ka 5.
6-\left(6+\frac{5}{2}\times \frac{4}{25}\right)+4
Whakahekea te hautanga \frac{16}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6-\left(6+\frac{5\times 4}{2\times 25}\right)+4
Me whakarea te \frac{5}{2} ki te \frac{4}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
6-\left(6+\frac{20}{50}\right)+4
Mahia ngā whakarea i roto i te hautanga \frac{5\times 4}{2\times 25}.
6-\left(6+\frac{2}{5}\right)+4
Whakahekea te hautanga \frac{20}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
6-\left(\frac{30}{5}+\frac{2}{5}\right)+4
Me tahuri te 6 ki te hautau \frac{30}{5}.
6-\frac{30+2}{5}+4
Tā te mea he rite te tauraro o \frac{30}{5} me \frac{2}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
6-\frac{32}{5}+4
Tāpirihia te 30 ki te 2, ka 32.
\frac{30}{5}-\frac{32}{5}+4
Me tahuri te 6 ki te hautau \frac{30}{5}.
\frac{30-32}{5}+4
Tā te mea he rite te tauraro o \frac{30}{5} me \frac{32}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{5}+4
Tangohia te 32 i te 30, ka -2.
-\frac{2}{5}+\frac{20}{5}
Me tahuri te 4 ki te hautau \frac{20}{5}.
\frac{-2+20}{5}
Tā te mea he rite te tauraro o -\frac{2}{5} me \frac{20}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18}{5}
Tāpirihia te -2 ki te 20, ka 18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}