Whakaoti mō w
w = \frac{7}{2} = 3\frac{1}{2} = 3.5
Tohaina
Kua tāruatia ki te papatopenga
6w-24+8w=2\left(w+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te w-4.
14w-24=2\left(w+9\right)
Pahekotia te 6w me 8w, ka 14w.
14w-24=2w+18
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te w+9.
14w-24-2w=18
Tangohia te 2w mai i ngā taha e rua.
12w-24=18
Pahekotia te 14w me -2w, ka 12w.
12w=18+24
Me tāpiri te 24 ki ngā taha e rua.
12w=42
Tāpirihia te 18 ki te 24, ka 42.
w=\frac{42}{12}
Whakawehea ngā taha e rua ki te 12.
w=\frac{7}{2}
Whakahekea te hautanga \frac{42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}