Whakaoti mō v (complex solution)
v\in \mathrm{C}
Whakaoti mō v
v\in \mathrm{R}
Tohaina
Kua tāruatia ki te papatopenga
6v-12+2=2\left(3v-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te v-2.
6v-10=2\left(3v-5\right)
Tāpirihia te -12 ki te 2, ka -10.
6v-10=6v-10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3v-5.
6v-10-6v=-10
Tangohia te 6v mai i ngā taha e rua.
-10=-10
Pahekotia te 6v me -6v, ka 0.
\text{true}
Whakatauritea te -10 me te -10.
v\in \mathrm{C}
He pono tēnei mō tētahi v ahakoa.
6v-12+2=2\left(3v-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te v-2.
6v-10=2\left(3v-5\right)
Tāpirihia te -12 ki te 2, ka -10.
6v-10=6v-10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3v-5.
6v-10-6v=-10
Tangohia te 6v mai i ngā taha e rua.
-10=-10
Pahekotia te 6v me -6v, ka 0.
\text{true}
Whakatauritea te -10 me te -10.
v\in \mathrm{R}
He pono tēnei mō tētahi v ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}