Whakaoti mō y
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
24-6y=3\left(2y+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 4-y.
24-6y=6y+3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2y+1.
24-6y-6y=3
Tangohia te 6y mai i ngā taha e rua.
24-12y=3
Pahekotia te -6y me -6y, ka -12y.
-12y=3-24
Tangohia te 24 mai i ngā taha e rua.
-12y=-21
Tangohia te 24 i te 3, ka -21.
y=\frac{-21}{-12}
Whakawehea ngā taha e rua ki te -12.
y=\frac{7}{4}
Whakahekea te hautanga \frac{-21}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}