Whakaoti mō t
t = \frac{8}{5} = 1\frac{3}{5} = 1.6
Tohaina
Kua tāruatia ki te papatopenga
18t-24-4t=4\left(t-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3t-4.
14t-24=4\left(t-2\right)
Pahekotia te 18t me -4t, ka 14t.
14t-24=4t-8
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te t-2.
14t-24-4t=-8
Tangohia te 4t mai i ngā taha e rua.
10t-24=-8
Pahekotia te 14t me -4t, ka 10t.
10t=-8+24
Me tāpiri te 24 ki ngā taha e rua.
10t=16
Tāpirihia te -8 ki te 24, ka 16.
t=\frac{16}{10}
Whakawehea ngā taha e rua ki te 10.
t=\frac{8}{5}
Whakahekea te hautanga \frac{16}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}