Whakaoti mō t
t = -\frac{35}{3} = -11\frac{2}{3} \approx -11.666666667
Tohaina
Kua tāruatia ki te papatopenga
18t+42=2\left(6t-10\right)-8
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3t+7.
18t+42=12t-20-8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6t-10.
18t+42=12t-28
Tangohia te 8 i te -20, ka -28.
18t+42-12t=-28
Tangohia te 12t mai i ngā taha e rua.
6t+42=-28
Pahekotia te 18t me -12t, ka 6t.
6t=-28-42
Tangohia te 42 mai i ngā taha e rua.
6t=-70
Tangohia te 42 i te -28, ka -70.
t=\frac{-70}{6}
Whakawehea ngā taha e rua ki te 6.
t=-\frac{35}{3}
Whakahekea te hautanga \frac{-70}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}