Aromātai
\frac{598}{5}=119.6
Tauwehe
\frac{2 \cdot 13 \cdot 23}{5} = 119\frac{3}{5} = 119.6
Tohaina
Kua tāruatia ki te papatopenga
6\times 20-\frac{4}{10}
Tangohia te 1 i te 21, ka 20.
120-\frac{4}{10}
Whakareatia te 6 ki te 20, ka 120.
120-\frac{2}{5}
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{600}{5}-\frac{2}{5}
Me tahuri te 120 ki te hautau \frac{600}{5}.
\frac{600-2}{5}
Tā te mea he rite te tauraro o \frac{600}{5} me \frac{2}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{598}{5}
Tangohia te 2 i te 600, ka 598.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}