Aromātai
18-6x
Whakaroha
18-6x
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(\frac{x}{3}+\frac{3}{3}\right)-4\left(2x-3\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{3}{3}.
6\times \frac{x+3}{3}-4\left(2x-3\right)
Tā te mea he rite te tauraro o \frac{x}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(x+3\right)-4\left(2x-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 6 me te 3.
2x+6-4\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
2x+6-8x+12
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2x-3.
-6x+6+12
Pahekotia te 2x me -8x, ka -6x.
-6x+18
Tāpirihia te 6 ki te 12, ka 18.
6\left(\frac{x}{3}+\frac{3}{3}\right)-4\left(2x-3\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{3}{3}.
6\times \frac{x+3}{3}-4\left(2x-3\right)
Tā te mea he rite te tauraro o \frac{x}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(x+3\right)-4\left(2x-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 6 me te 3.
2x+6-4\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+3.
2x+6-8x+12
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2x-3.
-6x+6+12
Pahekotia te 2x me -8x, ka -6x.
-6x+18
Tāpirihia te 6 ki te 12, ka 18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}