Whakaoti mō x
x=-\frac{1}{6}\approx -0.166666667
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=6\left(-1\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6x^{2}-6x\right)+\left(x-1\right)
Tuhia anō te 6x^{2}-5x-1 hei \left(6x^{2}-6x\right)+\left(x-1\right).
6x\left(x-1\right)+x-1
Whakatauwehea atu 6x i te 6x^{2}-6x.
\left(x-1\right)\left(6x+1\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{6}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 6x+1=0.
6x^{2}-5x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-1\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -5 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-1\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-1\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 6}
Whakareatia -24 ki te -1.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 6}
Tāpiri 25 ki te 24.
x=\frac{-\left(-5\right)±7}{2\times 6}
Tuhia te pūtakerua o te 49.
x=\frac{5±7}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±7}{12}
Whakareatia 2 ki te 6.
x=\frac{12}{12}
Nā, me whakaoti te whārite x=\frac{5±7}{12} ina he tāpiri te ±. Tāpiri 5 ki te 7.
x=1
Whakawehe 12 ki te 12.
x=-\frac{2}{12}
Nā, me whakaoti te whārite x=\frac{5±7}{12} ina he tango te ±. Tango 7 mai i 5.
x=-\frac{1}{6}
Whakahekea te hautanga \frac{-2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{1}{6}
Kua oti te whārite te whakatau.
6x^{2}-5x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-5x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
6x^{2}-5x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
6x^{2}-5x=1
Tango -1 mai i 0.
\frac{6x^{2}-5x}{6}=\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{5}{6}x=\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=\frac{1}{6}+\left(-\frac{5}{12}\right)^{2}
Whakawehea te -\frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{12}. Nā, tāpiria te pūrua o te -\frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{1}{6}+\frac{25}{144}
Pūruatia -\frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{49}{144}
Tāpiri \frac{1}{6} ki te \frac{25}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{12}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}-\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{12}=\frac{7}{12} x-\frac{5}{12}=-\frac{7}{12}
Whakarūnātia.
x=1 x=-\frac{1}{6}
Me tāpiri \frac{5}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}