Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=7 ab=6\left(-5\right)=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=10
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(6x^{2}-3x\right)+\left(10x-5\right)
Tuhia anō te 6x^{2}+7x-5 hei \left(6x^{2}-3x\right)+\left(10x-5\right).
3x\left(2x-1\right)+5\left(2x-1\right)
Tauwehea te 3x i te tuatahi me te 5 i te rōpū tuarua.
\left(2x-1\right)\left(3x+5\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-\frac{5}{3}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 3x+5=0.
6x^{2}+7x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 7 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
Pūrua 7.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
Whakareatia -24 ki te -5.
x=\frac{-7±\sqrt{169}}{2\times 6}
Tāpiri 49 ki te 120.
x=\frac{-7±13}{2\times 6}
Tuhia te pūtakerua o te 169.
x=\frac{-7±13}{12}
Whakareatia 2 ki te 6.
x=\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{-7±13}{12} ina he tāpiri te ±. Tāpiri -7 ki te 13.
x=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{20}{12}
Nā, me whakaoti te whārite x=\frac{-7±13}{12} ina he tango te ±. Tango 13 mai i -7.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{-20}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=-\frac{5}{3}
Kua oti te whārite te whakatau.
6x^{2}+7x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+7x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
6x^{2}+7x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
6x^{2}+7x=5
Tango -5 mai i 0.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{7}{6}x=\frac{5}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
Whakawehea te \frac{7}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{12}. Nā, tāpiria te pūrua o te \frac{7}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
Pūruatia \frac{7}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
Tāpiri \frac{5}{6} ki te \frac{49}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
Tauwehea x^{2}+\frac{7}{6}x+\frac{49}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
Whakarūnātia.
x=\frac{1}{2} x=-\frac{5}{3}
Me tango \frac{7}{12} mai i ngā taha e rua o te whārite.