Whakaoti mō x
x=-\frac{1}{3}\approx -0.333333333
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=6\times 1=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(6x^{2}+2x\right)+\left(3x+1\right)
Tuhia anō te 6x^{2}+5x+1 hei \left(6x^{2}+2x\right)+\left(3x+1\right).
2x\left(3x+1\right)+3x+1
Whakatauwehea atu 2x i te 6x^{2}+2x.
\left(3x+1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te 2x+1=0.
6x^{2}+5x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 5 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2\times 6}
Pūrua 5.
x=\frac{-5±\sqrt{25-24}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-5±\sqrt{1}}{2\times 6}
Tāpiri 25 ki te -24.
x=\frac{-5±1}{2\times 6}
Tuhia te pūtakerua o te 1.
x=\frac{-5±1}{12}
Whakareatia 2 ki te 6.
x=-\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{-5±1}{12} ina he tāpiri te ±. Tāpiri -5 ki te 1.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{-5±1}{12} ina he tango te ±. Tango 1 mai i -5.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
6x^{2}+5x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+5x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
6x^{2}+5x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{6x^{2}+5x}{6}=-\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{5}{6}x=-\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=-\frac{1}{6}+\left(\frac{5}{12}\right)^{2}
Whakawehea te \frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{12}. Nā, tāpiria te pūrua o te \frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{6}x+\frac{25}{144}=-\frac{1}{6}+\frac{25}{144}
Pūruatia \frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{1}{144}
Tāpiri -\frac{1}{6} ki te \frac{25}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{12}\right)^{2}=\frac{1}{144}
Tauwehea x^{2}+\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{12}=\frac{1}{12} x+\frac{5}{12}=-\frac{1}{12}
Whakarūnātia.
x=-\frac{1}{3} x=-\frac{1}{2}
Me tango \frac{5}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}