Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}+4x-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-24\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 6\left(-24\right)}}{2\times 6}
Pūrua 4.
x=\frac{-4±\sqrt{16-24\left(-24\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-4±\sqrt{16+576}}{2\times 6}
Whakareatia -24 ki te -24.
x=\frac{-4±\sqrt{592}}{2\times 6}
Tāpiri 16 ki te 576.
x=\frac{-4±4\sqrt{37}}{2\times 6}
Tuhia te pūtakerua o te 592.
x=\frac{-4±4\sqrt{37}}{12}
Whakareatia 2 ki te 6.
x=\frac{4\sqrt{37}-4}{12}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{37}}{12} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{37}.
x=\frac{\sqrt{37}-1}{3}
Whakawehe -4+4\sqrt{37} ki te 12.
x=\frac{-4\sqrt{37}-4}{12}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{37}}{12} ina he tango te ±. Tango 4\sqrt{37} mai i -4.
x=\frac{-\sqrt{37}-1}{3}
Whakawehe -4-4\sqrt{37} ki te 12.
6x^{2}+4x-24=6\left(x-\frac{\sqrt{37}-1}{3}\right)\left(x-\frac{-\sqrt{37}-1}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1+\sqrt{37}}{3} mō te x_{1} me te \frac{-1-\sqrt{37}}{3} mō te x_{2}.