Whakaoti mō x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=6\left(-7\right)=-42
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,42 -2,21 -3,14 -6,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=21
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(6x^{2}-2x\right)+\left(21x-7\right)
Tuhia anō te 6x^{2}+19x-7 hei \left(6x^{2}-2x\right)+\left(21x-7\right).
2x\left(3x-1\right)+7\left(3x-1\right)
Tauwehea te 2x i te tuatahi me te 7 i te rōpū tuarua.
\left(3x-1\right)\left(2x+7\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 2x+7=0.
6x^{2}+19x-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-19±\sqrt{19^{2}-4\times 6\left(-7\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 19 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 6\left(-7\right)}}{2\times 6}
Pūrua 19.
x=\frac{-19±\sqrt{361-24\left(-7\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-19±\sqrt{361+168}}{2\times 6}
Whakareatia -24 ki te -7.
x=\frac{-19±\sqrt{529}}{2\times 6}
Tāpiri 361 ki te 168.
x=\frac{-19±23}{2\times 6}
Tuhia te pūtakerua o te 529.
x=\frac{-19±23}{12}
Whakareatia 2 ki te 6.
x=\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{-19±23}{12} ina he tāpiri te ±. Tāpiri -19 ki te 23.
x=\frac{1}{3}
Whakahekea te hautanga \frac{4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{42}{12}
Nā, me whakaoti te whārite x=\frac{-19±23}{12} ina he tango te ±. Tango 23 mai i -19.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{7}{2}
Kua oti te whārite te whakatau.
6x^{2}+19x-7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+19x-7-\left(-7\right)=-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
6x^{2}+19x=-\left(-7\right)
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
6x^{2}+19x=7
Tango -7 mai i 0.
\frac{6x^{2}+19x}{6}=\frac{7}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{19}{6}x=\frac{7}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=\frac{7}{6}+\left(\frac{19}{12}\right)^{2}
Whakawehea te \frac{19}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{19}{12}. Nā, tāpiria te pūrua o te \frac{19}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{7}{6}+\frac{361}{144}
Pūruatia \frac{19}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{529}{144}
Tāpiri \frac{7}{6} ki te \frac{361}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{19}{12}\right)^{2}=\frac{529}{144}
Tauwehea x^{2}+\frac{19}{6}x+\frac{361}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{19}{12}=\frac{23}{12} x+\frac{19}{12}=-\frac{23}{12}
Whakarūnātia.
x=\frac{1}{3} x=-\frac{7}{2}
Me tango \frac{19}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}