Whakaoti mō x (complex solution)
x=\sqrt{190}-1\approx 12.784048752
x=-\left(\sqrt{190}+1\right)\approx -14.784048752
Whakaoti mō x
x=\sqrt{190}-1\approx 12.784048752
x=-\sqrt{190}-1\approx -14.784048752
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}+12x-1134=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 12 mō b, me -1134 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
Pūrua 12.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
Whakareatia -24 ki te -1134.
x=\frac{-12±\sqrt{27360}}{2\times 6}
Tāpiri 144 ki te 27216.
x=\frac{-12±12\sqrt{190}}{2\times 6}
Tuhia te pūtakerua o te 27360.
x=\frac{-12±12\sqrt{190}}{12}
Whakareatia 2 ki te 6.
x=\frac{12\sqrt{190}-12}{12}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{190}}{12} ina he tāpiri te ±. Tāpiri -12 ki te 12\sqrt{190}.
x=\sqrt{190}-1
Whakawehe -12+12\sqrt{190} ki te 12.
x=\frac{-12\sqrt{190}-12}{12}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{190}}{12} ina he tango te ±. Tango 12\sqrt{190} mai i -12.
x=-\sqrt{190}-1
Whakawehe -12-12\sqrt{190} ki te 12.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Kua oti te whārite te whakatau.
6x^{2}+12x-1134=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
Me tāpiri 1134 ki ngā taha e rua o te whārite.
6x^{2}+12x=-\left(-1134\right)
Mā te tango i te -1134 i a ia ake anō ka toe ko te 0.
6x^{2}+12x=1134
Tango -1134 mai i 0.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+2x=\frac{1134}{6}
Whakawehe 12 ki te 6.
x^{2}+2x=189
Whakawehe 1134 ki te 6.
x^{2}+2x+1^{2}=189+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=189+1
Pūrua 1.
x^{2}+2x+1=190
Tāpiri 189 ki te 1.
\left(x+1\right)^{2}=190
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{190} x+1=-\sqrt{190}
Whakarūnātia.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Me tango 1 mai i ngā taha e rua o te whārite.
6x^{2}+12x-1134=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 12 mō b, me -1134 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
Pūrua 12.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
Whakareatia -24 ki te -1134.
x=\frac{-12±\sqrt{27360}}{2\times 6}
Tāpiri 144 ki te 27216.
x=\frac{-12±12\sqrt{190}}{2\times 6}
Tuhia te pūtakerua o te 27360.
x=\frac{-12±12\sqrt{190}}{12}
Whakareatia 2 ki te 6.
x=\frac{12\sqrt{190}-12}{12}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{190}}{12} ina he tāpiri te ±. Tāpiri -12 ki te 12\sqrt{190}.
x=\sqrt{190}-1
Whakawehe -12+12\sqrt{190} ki te 12.
x=\frac{-12\sqrt{190}-12}{12}
Nā, me whakaoti te whārite x=\frac{-12±12\sqrt{190}}{12} ina he tango te ±. Tango 12\sqrt{190} mai i -12.
x=-\sqrt{190}-1
Whakawehe -12-12\sqrt{190} ki te 12.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Kua oti te whārite te whakatau.
6x^{2}+12x-1134=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
Me tāpiri 1134 ki ngā taha e rua o te whārite.
6x^{2}+12x=-\left(-1134\right)
Mā te tango i te -1134 i a ia ake anō ka toe ko te 0.
6x^{2}+12x=1134
Tango -1134 mai i 0.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+2x=\frac{1134}{6}
Whakawehe 12 ki te 6.
x^{2}+2x=189
Whakawehe 1134 ki te 6.
x^{2}+2x+1^{2}=189+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=189+1
Pūrua 1.
x^{2}+2x+1=190
Tāpiri 189 ki te 1.
\left(x+1\right)^{2}=190
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{190} x+1=-\sqrt{190}
Whakarūnātia.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}