Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=11 ab=6\left(-35\right)=-210
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Tātaihia te tapeke mō ia takirua.
a=-10 b=21
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(6x^{2}-10x\right)+\left(21x-35\right)
Tuhia anō te 6x^{2}+11x-35 hei \left(6x^{2}-10x\right)+\left(21x-35\right).
2x\left(3x-5\right)+7\left(3x-5\right)
Tauwehea te 2x i te tuatahi me te 7 i te rōpū tuarua.
\left(3x-5\right)\left(2x+7\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{3} x=-\frac{7}{2}
Hei kimi otinga whārite, me whakaoti te 3x-5=0 me te 2x+7=0.
6x^{2}+11x-35=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-35\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 11 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 6\left(-35\right)}}{2\times 6}
Pūrua 11.
x=\frac{-11±\sqrt{121-24\left(-35\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-11±\sqrt{121+840}}{2\times 6}
Whakareatia -24 ki te -35.
x=\frac{-11±\sqrt{961}}{2\times 6}
Tāpiri 121 ki te 840.
x=\frac{-11±31}{2\times 6}
Tuhia te pūtakerua o te 961.
x=\frac{-11±31}{12}
Whakareatia 2 ki te 6.
x=\frac{20}{12}
Nā, me whakaoti te whārite x=\frac{-11±31}{12} ina he tāpiri te ±. Tāpiri -11 ki te 31.
x=\frac{5}{3}
Whakahekea te hautanga \frac{20}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{42}{12}
Nā, me whakaoti te whārite x=\frac{-11±31}{12} ina he tango te ±. Tango 31 mai i -11.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{5}{3} x=-\frac{7}{2}
Kua oti te whārite te whakatau.
6x^{2}+11x-35=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+11x-35-\left(-35\right)=-\left(-35\right)
Me tāpiri 35 ki ngā taha e rua o te whārite.
6x^{2}+11x=-\left(-35\right)
Mā te tango i te -35 i a ia ake anō ka toe ko te 0.
6x^{2}+11x=35
Tango -35 mai i 0.
\frac{6x^{2}+11x}{6}=\frac{35}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{11}{6}x=\frac{35}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=\frac{35}{6}+\left(\frac{11}{12}\right)^{2}
Whakawehea te \frac{11}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{12}. Nā, tāpiria te pūrua o te \frac{11}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{35}{6}+\frac{121}{144}
Pūruatia \frac{11}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{961}{144}
Tāpiri \frac{35}{6} ki te \frac{121}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{11}{12}\right)^{2}=\frac{961}{144}
Tauwehea x^{2}+\frac{11}{6}x+\frac{121}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{961}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{12}=\frac{31}{12} x+\frac{11}{12}=-\frac{31}{12}
Whakarūnātia.
x=\frac{5}{3} x=-\frac{7}{2}
Me tango \frac{11}{12} mai i ngā taha e rua o te whārite.