Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=11 ab=6\times 3=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=2 b=9
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(6x^{2}+2x\right)+\left(9x+3\right)
Tuhia anō te 6x^{2}+11x+3 hei \left(6x^{2}+2x\right)+\left(9x+3\right).
2x\left(3x+1\right)+3\left(3x+1\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x+1\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te 2x+3=0.
6x^{2}+11x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 6\times 3}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 11 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 6\times 3}}{2\times 6}
Pūrua 11.
x=\frac{-11±\sqrt{121-24\times 3}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-11±\sqrt{121-72}}{2\times 6}
Whakareatia -24 ki te 3.
x=\frac{-11±\sqrt{49}}{2\times 6}
Tāpiri 121 ki te -72.
x=\frac{-11±7}{2\times 6}
Tuhia te pūtakerua o te 49.
x=\frac{-11±7}{12}
Whakareatia 2 ki te 6.
x=-\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{-11±7}{12} ina he tāpiri te ±. Tāpiri -11 ki te 7.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{-11±7}{12} ina he tango te ±. Tango 7 mai i -11.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
6x^{2}+11x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+11x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
6x^{2}+11x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{6x^{2}+11x}{6}=-\frac{3}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{11}{6}x=-\frac{3}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{11}{6}x=-\frac{1}{2}
Whakahekea te hautanga \frac{-3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=-\frac{1}{2}+\left(\frac{11}{12}\right)^{2}
Whakawehea te \frac{11}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{12}. Nā, tāpiria te pūrua o te \frac{11}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{6}x+\frac{121}{144}=-\frac{1}{2}+\frac{121}{144}
Pūruatia \frac{11}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{49}{144}
Tāpiri -\frac{1}{2} ki te \frac{121}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{11}{12}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}+\frac{11}{6}x+\frac{121}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{12}=\frac{7}{12} x+\frac{11}{12}=-\frac{7}{12}
Whakarūnātia.
x=-\frac{1}{3} x=-\frac{3}{2}
Me tango \frac{11}{12} mai i ngā taha e rua o te whārite.