Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}=-108
Tangohia te 108 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-108}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=-18
Whakawehea te -108 ki te 6, kia riro ko -18.
x=3\sqrt{2}i x=-3\sqrt{2}i
Kua oti te whārite te whakatau.
6x^{2}+108=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 108}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me 108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\times 108}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\times 108}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{-2592}}{2\times 6}
Whakareatia -24 ki te 108.
x=\frac{0±36\sqrt{2}i}{2\times 6}
Tuhia te pūtakerua o te -2592.
x=\frac{0±36\sqrt{2}i}{12}
Whakareatia 2 ki te 6.
x=3\sqrt{2}i
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{2}i}{12} ina he tāpiri te ±.
x=-3\sqrt{2}i
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{2}i}{12} ina he tango te ±.
x=3\sqrt{2}i x=-3\sqrt{2}i
Kua oti te whārite te whakatau.