Aromātai
\frac{1}{2}-\sqrt{2}\approx -0.914213562
Tohaina
Kua tāruatia ki te papatopenga
6\times \left(\frac{\sqrt{3}}{3}\right)^{2}-\sqrt{3}\sin(60)-2\sin(45)
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
6\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\sin(60)-2\sin(45)
Kia whakarewa i te \frac{\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\sin(60)-2\sin(45)
Tuhia te 6\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} hei hautanga kotahi.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\sqrt{3}\times \frac{\sqrt{3}}{2}-2\sin(45)
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{\sqrt{3}\sqrt{3}}{2}-2\sin(45)
Tuhia te \sqrt{3}\times \frac{\sqrt{3}}{2} hei hautanga kotahi.
\frac{6\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{3}{2}-2\sin(45)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{2\times 6\left(\sqrt{3}\right)^{2}}{18}-\frac{3\times 9}{18}-2\sin(45)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3^{2} me 2 ko 18. Whakareatia \frac{6\left(\sqrt{3}\right)^{2}}{3^{2}} ki te \frac{2}{2}. Whakareatia \frac{3}{2} ki te \frac{9}{9}.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-2\sin(45)
Tā te mea he rite te tauraro o \frac{2\times 6\left(\sqrt{3}\right)^{2}}{18} me \frac{3\times 9}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-2\times \frac{\sqrt{2}}{2}
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\sqrt{2}
Me whakakore te 2 me te 2.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\frac{18\sqrt{2}}{18}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{2} ki te \frac{18}{18}.
\frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9-18\sqrt{2}}{18}
Tā te mea he rite te tauraro o \frac{2\times 6\left(\sqrt{3}\right)^{2}-3\times 9}{18} me \frac{18\sqrt{2}}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{12\left(\sqrt{3}\right)^{2}-3\times 9}{18}-\sqrt{2}
Mahia ngā whakarea.
\frac{12\times 3-3\times 9}{18}-\sqrt{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{36-3\times 9}{18}-\sqrt{2}
Whakareatia te 12 ki te 3, ka 36.
\frac{36-27}{18}-\sqrt{2}
Whakareatia te -3 ki te 9, ka -27.
\frac{9}{18}-\sqrt{2}
Tangohia te 27 i te 36, ka 9.
\frac{1}{2}-\sqrt{2}
Whakahekea te hautanga \frac{9}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}