Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\times \frac{\sqrt{1}}{\sqrt{8}}-\sqrt{32}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{8}}.
6\times \frac{1}{\sqrt{8}}-\sqrt{32}
Tātaitia te pūtakerua o 1 kia tae ki 1.
6\times \frac{1}{2\sqrt{2}}-\sqrt{32}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
6\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{32}
Whakangāwaritia te tauraro o \frac{1}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
6\times \frac{\sqrt{2}}{2\times 2}-\sqrt{32}
Ko te pūrua o \sqrt{2} ko 2.
6\times \frac{\sqrt{2}}{4}-\sqrt{32}
Whakareatia te 2 ki te 2, ka 4.
\frac{6\sqrt{2}}{4}-\sqrt{32}
Tuhia te 6\times \frac{\sqrt{2}}{4} hei hautanga kotahi.
\frac{6\sqrt{2}}{4}-4\sqrt{2}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
-\frac{5}{2}\sqrt{2}
Pahekotia te \frac{6\sqrt{2}}{4} me -4\sqrt{2}, ka -\frac{5}{2}\sqrt{2}.