Aromātai
-\frac{5\sqrt{2}}{2}\approx -3.535533906
Tohaina
Kua tāruatia ki te papatopenga
6\times \frac{\sqrt{1}}{\sqrt{8}}-\sqrt{32}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{8}}.
6\times \frac{1}{\sqrt{8}}-\sqrt{32}
Tātaitia te pūtakerua o 1 kia tae ki 1.
6\times \frac{1}{2\sqrt{2}}-\sqrt{32}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
6\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{32}
Whakangāwaritia te tauraro o \frac{1}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
6\times \frac{\sqrt{2}}{2\times 2}-\sqrt{32}
Ko te pūrua o \sqrt{2} ko 2.
6\times \frac{\sqrt{2}}{4}-\sqrt{32}
Whakareatia te 2 ki te 2, ka 4.
\frac{6\sqrt{2}}{4}-\sqrt{32}
Tuhia te 6\times \frac{\sqrt{2}}{4} hei hautanga kotahi.
\frac{6\sqrt{2}}{4}-4\sqrt{2}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
-\frac{5}{2}\sqrt{2}
Pahekotia te \frac{6\sqrt{2}}{4} me -4\sqrt{2}, ka -\frac{5}{2}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}