Whakaoti mō m
m=\frac{25t^{2}}{72}+\frac{n}{2}
t\geq 0
Whakaoti mō n
n=-\frac{25t^{2}}{36}+2m
t\geq 0
Whakaoti mō m (complex solution)
m=\frac{25t^{2}}{72}+\frac{n}{2}
arg(t)<\pi \text{ or }t=0
Whakaoti mō n (complex solution)
n=-\frac{25t^{2}}{36}+2m
arg(t)<\pi \text{ or }t=0
Tohaina
Kua tāruatia ki te papatopenga
\frac{6\sqrt{2m-n}}{6}=\frac{5t}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{2m-n}=\frac{5t}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
2m-n=\frac{25t^{2}}{36}
Pūruatia ngā taha e rua o te whārite.
2m-n-\left(-n\right)=\frac{25t^{2}}{36}-\left(-n\right)
Me tango -n mai i ngā taha e rua o te whārite.
2m=\frac{25t^{2}}{36}-\left(-n\right)
Mā te tango i te -n i a ia ake anō ka toe ko te 0.
2m=\frac{25t^{2}}{36}+n
Tango -n mai i \frac{25t^{2}}{36}.
\frac{2m}{2}=\frac{\frac{25t^{2}}{36}+n}{2}
Whakawehea ngā taha e rua ki te 2.
m=\frac{\frac{25t^{2}}{36}+n}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m=\frac{25t^{2}}{72}+\frac{n}{2}
Whakawehe \frac{25t^{2}}{36}+n ki te 2.
\frac{6\sqrt{-n+2m}}{6}=\frac{5t}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{-n+2m}=\frac{5t}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
-n+2m=\frac{25t^{2}}{36}
Pūruatia ngā taha e rua o te whārite.
-n+2m-2m=\frac{25t^{2}}{36}-2m
Me tango 2m mai i ngā taha e rua o te whārite.
-n=\frac{25t^{2}}{36}-2m
Mā te tango i te 2m i a ia ake anō ka toe ko te 0.
\frac{-n}{-1}=\frac{\frac{25t^{2}}{36}-2m}{-1}
Whakawehea ngā taha e rua ki te -1.
n=\frac{\frac{25t^{2}}{36}-2m}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
n=-\frac{25t^{2}}{36}+2m
Whakawehe \frac{25t^{2}}{36}-2m ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}