Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image
Whakaoti mō n
Tick mark Image
Whakaoti mō m (complex solution)
Tick mark Image
Whakaoti mō n (complex solution)
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6\sqrt{2m-n}}{6}=\frac{5t}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{2m-n}=\frac{5t}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
2m-n=\frac{25t^{2}}{36}
Pūruatia ngā taha e rua o te whārite.
2m-n-\left(-n\right)=\frac{25t^{2}}{36}-\left(-n\right)
Me tango -n mai i ngā taha e rua o te whārite.
2m=\frac{25t^{2}}{36}-\left(-n\right)
Mā te tango i te -n i a ia ake anō ka toe ko te 0.
2m=\frac{25t^{2}}{36}+n
Tango -n mai i \frac{25t^{2}}{36}.
\frac{2m}{2}=\frac{\frac{25t^{2}}{36}+n}{2}
Whakawehea ngā taha e rua ki te 2.
m=\frac{\frac{25t^{2}}{36}+n}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m=\frac{25t^{2}}{72}+\frac{n}{2}
Whakawehe \frac{25t^{2}}{36}+n ki te 2.
\frac{6\sqrt{-n+2m}}{6}=\frac{5t}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{-n+2m}=\frac{5t}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
-n+2m=\frac{25t^{2}}{36}
Pūruatia ngā taha e rua o te whārite.
-n+2m-2m=\frac{25t^{2}}{36}-2m
Me tango 2m mai i ngā taha e rua o te whārite.
-n=\frac{25t^{2}}{36}-2m
Mā te tango i te 2m i a ia ake anō ka toe ko te 0.
\frac{-n}{-1}=\frac{\frac{25t^{2}}{36}-2m}{-1}
Whakawehea ngā taha e rua ki te -1.
n=\frac{\frac{25t^{2}}{36}-2m}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
n=-\frac{25t^{2}}{36}+2m
Whakawehe \frac{25t^{2}}{36}-2m ki te -1.