Aromātai
\frac{24\sqrt{2}-12}{7}\approx 3.1344465
Tauwehe
\frac{12 {(2 \sqrt{2} - 1)}}{7} = 3.134446499564898
Tohaina
Kua tāruatia ki te papatopenga
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{\left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{12}{10+6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{10^{2}-\left(6\sqrt{2}\right)^{2}}
Whakaarohia te \left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-\left(6\sqrt{2}\right)^{2}}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-6^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(6\sqrt{2}\right)^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\left(\sqrt{2}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\times 2}
Ko te pūrua o \sqrt{2} ko 2.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-72}
Whakareatia te 36 ki te 2, ka 72.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{28}
Tangohia te 72 i te 100, ka 28.
6\sqrt{2}-6+\frac{3}{7}\left(10-6\sqrt{2}\right)
Whakawehea te 12\left(10-6\sqrt{2}\right) ki te 28, kia riro ko \frac{3}{7}\left(10-6\sqrt{2}\right).
6\sqrt{2}-6+\frac{3}{7}\times 10+\frac{3}{7}\left(-6\right)\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{7} ki te 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{3\times 10}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Tuhia te \frac{3}{7}\times 10 hei hautanga kotahi.
6\sqrt{2}-6+\frac{30}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Whakareatia te 3 ki te 10, ka 30.
6\sqrt{2}-6+\frac{30}{7}+\frac{3\left(-6\right)}{7}\sqrt{2}
Tuhia te \frac{3}{7}\left(-6\right) hei hautanga kotahi.
6\sqrt{2}-6+\frac{30}{7}+\frac{-18}{7}\sqrt{2}
Whakareatia te 3 ki te -6, ka -18.
6\sqrt{2}-6+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Ka taea te hautanga \frac{-18}{7} te tuhi anō ko -\frac{18}{7} mā te tango i te tohu tōraro.
6\sqrt{2}-\frac{42}{7}+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Me tahuri te -6 ki te hautau -\frac{42}{7}.
6\sqrt{2}+\frac{-42+30}{7}-\frac{18}{7}\sqrt{2}
Tā te mea he rite te tauraro o -\frac{42}{7} me \frac{30}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
6\sqrt{2}-\frac{12}{7}-\frac{18}{7}\sqrt{2}
Tāpirihia te -42 ki te 30, ka -12.
\frac{24}{7}\sqrt{2}-\frac{12}{7}
Pahekotia te 6\sqrt{2} me -\frac{18}{7}\sqrt{2}, ka \frac{24}{7}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}