Aromātai
-\frac{115}{24}\approx -4.791666667
Tauwehe
-\frac{115}{24} = -4\frac{19}{24} = -4.791666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{144+9}{24}-\frac{11\times 24+4}{24}
Whakareatia te 6 ki te 24, ka 144.
\frac{153}{24}-\frac{11\times 24+4}{24}
Tāpirihia te 144 ki te 9, ka 153.
\frac{51}{8}-\frac{11\times 24+4}{24}
Whakahekea te hautanga \frac{153}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{51}{8}-\frac{264+4}{24}
Whakareatia te 11 ki te 24, ka 264.
\frac{51}{8}-\frac{268}{24}
Tāpirihia te 264 ki te 4, ka 268.
\frac{51}{8}-\frac{67}{6}
Whakahekea te hautanga \frac{268}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{153}{24}-\frac{268}{24}
Ko te maha noa iti rawa atu o 8 me 6 ko 24. Me tahuri \frac{51}{8} me \frac{67}{6} ki te hautau me te tautūnga 24.
\frac{153-268}{24}
Tā te mea he rite te tauraro o \frac{153}{24} me \frac{268}{24}, me tango rāua mā te tango i ō raua taurunga.
-\frac{115}{24}
Tangohia te 268 i te 153, ka -115.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}