Aromātai
\frac{31}{2}=15.5
Tauwehe
\frac{31}{2} = 15\frac{1}{2} = 15.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{12+1}{2}-3\left(-3\right)
Whakareatia te 6 ki te 2, ka 12.
\frac{13}{2}-3\left(-3\right)
Tāpirihia te 12 ki te 1, ka 13.
\frac{13}{2}-\left(-9\right)
Whakareatia te 3 ki te -3, ka -9.
\frac{13}{2}+9
Ko te tauaro o -9 ko 9.
\frac{13}{2}+\frac{18}{2}
Me tahuri te 9 ki te hautau \frac{18}{2}.
\frac{13+18}{2}
Tā te mea he rite te tauraro o \frac{13}{2} me \frac{18}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{2}
Tāpirihia te 13 ki te 18, ka 31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}