Manatoko
pono
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
6 \frac { 3 } { 8 } - 4 \frac { 5 } { 8 } = 1 \frac { 6 } { 8 }
Tohaina
Kua tāruatia ki te papatopenga
6\times 8+3-\left(4\times 8+5\right)=1\times 8+6
Whakareatia ngā taha e rua o te whārite ki te 8.
48+3-\left(4\times 8+5\right)=1\times 8+6
Whakareatia te 6 ki te 8, ka 48.
51-\left(4\times 8+5\right)=1\times 8+6
Tāpirihia te 48 ki te 3, ka 51.
51-\left(32+5\right)=1\times 8+6
Whakareatia te 4 ki te 8, ka 32.
51-37=1\times 8+6
Tāpirihia te 32 ki te 5, ka 37.
14=1\times 8+6
Tangohia te 37 i te 51, ka 14.
14=8+6
Whakareatia te 1 ki te 8, ka 8.
14=14
Tāpirihia te 8 ki te 6, ka 14.
\text{true}
Whakatauritea te 14 me te 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}