Aromātai
3.125
Tauwehe
\frac{5 ^ {2}}{2 ^ {3}} = 3\frac{1}{8} = 3.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{48+3}{8}}{4.15-2.11}
Whakareatia te 6 ki te 8, ka 48.
\frac{\frac{51}{8}}{4.15-2.11}
Tāpirihia te 48 ki te 3, ka 51.
\frac{\frac{51}{8}}{2.04}
Tangohia te 2.11 i te 4.15, ka 2.04.
\frac{51}{8\times 2.04}
Tuhia te \frac{\frac{51}{8}}{2.04} hei hautanga kotahi.
\frac{51}{16.32}
Whakareatia te 8 ki te 2.04, ka 16.32.
\frac{5100}{1632}
Whakarohaina te \frac{51}{16.32} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{25}{8}
Whakahekea te hautanga \frac{5100}{1632} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 204.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}