Aromātai
\frac{143}{15}\approx 9.533333333
Tauwehe
\frac{11 \cdot 13}{3 \cdot 5} = 9\frac{8}{15} = 9.533333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{30+2}{5}+\frac{3\times 3+1}{3}+\frac{1}{2}-\frac{7}{10}
Whakareatia te 6 ki te 5, ka 30.
\frac{32}{5}+\frac{3\times 3+1}{3}+\frac{1}{2}-\frac{7}{10}
Tāpirihia te 30 ki te 2, ka 32.
\frac{32}{5}+\frac{9+1}{3}+\frac{1}{2}-\frac{7}{10}
Whakareatia te 3 ki te 3, ka 9.
\frac{32}{5}+\frac{10}{3}+\frac{1}{2}-\frac{7}{10}
Tāpirihia te 9 ki te 1, ka 10.
\frac{96}{15}+\frac{50}{15}+\frac{1}{2}-\frac{7}{10}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{32}{5} me \frac{10}{3} ki te hautau me te tautūnga 15.
\frac{96+50}{15}+\frac{1}{2}-\frac{7}{10}
Tā te mea he rite te tauraro o \frac{96}{15} me \frac{50}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{146}{15}+\frac{1}{2}-\frac{7}{10}
Tāpirihia te 96 ki te 50, ka 146.
\frac{292}{30}+\frac{15}{30}-\frac{7}{10}
Ko te maha noa iti rawa atu o 15 me 2 ko 30. Me tahuri \frac{146}{15} me \frac{1}{2} ki te hautau me te tautūnga 30.
\frac{292+15}{30}-\frac{7}{10}
Tā te mea he rite te tauraro o \frac{292}{30} me \frac{15}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{307}{30}-\frac{7}{10}
Tāpirihia te 292 ki te 15, ka 307.
\frac{307}{30}-\frac{21}{30}
Ko te maha noa iti rawa atu o 30 me 10 ko 30. Me tahuri \frac{307}{30} me \frac{7}{10} ki te hautau me te tautūnga 30.
\frac{307-21}{30}
Tā te mea he rite te tauraro o \frac{307}{30} me \frac{21}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{286}{30}
Tangohia te 21 i te 307, ka 286.
\frac{143}{15}
Whakahekea te hautanga \frac{286}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}