Aromātai
-\frac{5}{2}=-2.5
Tauwehe
-\frac{5}{2} = -2\frac{1}{2} = -2.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{-\frac{10+2}{5}}
Whakareatia te 2 ki te 5, ka 10.
\frac{6}{-\frac{12}{5}}
Tāpirihia te 10 ki te 2, ka 12.
6\left(-\frac{5}{12}\right)
Whakawehe 6 ki te -\frac{12}{5} mā te whakarea 6 ki te tau huripoki o -\frac{12}{5}.
\frac{6\left(-5\right)}{12}
Tuhia te 6\left(-\frac{5}{12}\right) hei hautanga kotahi.
\frac{-30}{12}
Whakareatia te 6 ki te -5, ka -30.
-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}