Aromātai
20039
Tauwehe
29\times 691
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
6 \cdot 32 \cdot 97 - 31 \cdot 1 \cdot 13 - 42 + 93 \cdot 20
Tohaina
Kua tāruatia ki te papatopenga
192\times 97-31\times 1\times 13-42+93\times 20
Whakareatia te 6 ki te 32, ka 192.
18624-31\times 1\times 13-42+93\times 20
Whakareatia te 192 ki te 97, ka 18624.
18624-31\times 13-42+93\times 20
Whakareatia te 31 ki te 1, ka 31.
18624-403-42+93\times 20
Whakareatia te 31 ki te 13, ka 403.
18221-42+93\times 20
Tangohia te 403 i te 18624, ka 18221.
18179+93\times 20
Tangohia te 42 i te 18221, ka 18179.
18179+1860
Whakareatia te 93 ki te 20, ka 1860.
20039
Tāpirihia te 18179 ki te 1860, ka 20039.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}