Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\times \left(\frac{x^{3}z^{4}}{x^{-4}z^{-2}y}\right)^{-1}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
6\times \left(\frac{z^{6}x^{7}}{y}\right)^{-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
6\times \frac{\left(z^{6}x^{7}\right)^{-1}}{y^{-1}}
Kia whakarewa i te \frac{z^{6}x^{7}}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{6\left(z^{6}x^{7}\right)^{-1}}{y^{-1}}
Tuhia te 6\times \frac{\left(z^{6}x^{7}\right)^{-1}}{y^{-1}} hei hautanga kotahi.
\frac{6\left(z^{6}\right)^{-1}\left(x^{7}\right)^{-1}}{y^{-1}}
Whakarohaina te \left(z^{6}x^{7}\right)^{-1}.
\frac{6z^{-6}\left(x^{7}\right)^{-1}}{y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -1 kia riro ai te -6.
\frac{6z^{-6}x^{-7}}{y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 7 me te -1 kia riro ai te -7.