Whakaoti mō c
c=10
c=-10
Tohaina
Kua tāruatia ki te papatopenga
36+8^{2}=c^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+64=c^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
100=c^{2}
Tāpirihia te 36 ki te 64, ka 100.
c^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
\left(c-10\right)\left(c+10\right)=0
Whakaarohia te c^{2}-100. Tuhia anō te c^{2}-100 hei c^{2}-10^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
c=10 c=-10
Hei kimi otinga whārite, me whakaoti te c-10=0 me te c+10=0.
36+8^{2}=c^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+64=c^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
100=c^{2}
Tāpirihia te 36 ki te 64, ka 100.
c^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c=10 c=-10
Tuhia te pūtakerua o ngā taha e rua o te whārite.
36+8^{2}=c^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+64=c^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
100=c^{2}
Tāpirihia te 36 ki te 64, ka 100.
c^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
c=\frac{0±\sqrt{0^{2}-4\left(-100\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-100\right)}}{2}
Pūrua 0.
c=\frac{0±\sqrt{400}}{2}
Whakareatia -4 ki te -100.
c=\frac{0±20}{2}
Tuhia te pūtakerua o te 400.
c=10
Nā, me whakaoti te whārite c=\frac{0±20}{2} ina he tāpiri te ±. Whakawehe 20 ki te 2.
c=-10
Nā, me whakaoti te whārite c=\frac{0±20}{2} ina he tango te ±. Whakawehe -20 ki te 2.
c=10 c=-10
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}