Whakaoti mō c
c=2\sqrt{109}\approx 20.880613018
c=-2\sqrt{109}\approx -20.880613018
Tohaina
Kua tāruatia ki te papatopenga
36+20^{2}=c^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+400=c^{2}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
436=c^{2}
Tāpirihia te 36 ki te 400, ka 436.
c^{2}=436
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c=2\sqrt{109} c=-2\sqrt{109}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
36+20^{2}=c^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+400=c^{2}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
436=c^{2}
Tāpirihia te 36 ki te 400, ka 436.
c^{2}=436
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}-436=0
Tangohia te 436 mai i ngā taha e rua.
c=\frac{0±\sqrt{0^{2}-4\left(-436\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -436 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-436\right)}}{2}
Pūrua 0.
c=\frac{0±\sqrt{1744}}{2}
Whakareatia -4 ki te -436.
c=\frac{0±4\sqrt{109}}{2}
Tuhia te pūtakerua o te 1744.
c=2\sqrt{109}
Nā, me whakaoti te whārite c=\frac{0±4\sqrt{109}}{2} ina he tāpiri te ±.
c=-2\sqrt{109}
Nā, me whakaoti te whārite c=\frac{0±4\sqrt{109}}{2} ina he tango te ±.
c=2\sqrt{109} c=-2\sqrt{109}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}