Whakaoti mō x (complex solution)
x=-\sqrt{110}i\approx -0-10.488088482i
x=\sqrt{110}i\approx 10.488088482i
Graph
Tohaina
Kua tāruatia ki te papatopenga
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Whakareatia te 2 ki te 5, ka 10.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(10+x\right)^{2}.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Tāpirihia te 36 ki te 100, ka 136.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
136+20x+x^{2}=16-\left(10-x\right)^{2}
Whakareatia te 2 ki te 5, ka 10.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(10-x\right)^{2}.
136+20x+x^{2}=16-100+20x-x^{2}
Hei kimi i te tauaro o 100-20x+x^{2}, kimihia te tauaro o ia taurangi.
136+20x+x^{2}=-84+20x-x^{2}
Tangohia te 100 i te 16, ka -84.
136+20x+x^{2}-20x=-84-x^{2}
Tangohia te 20x mai i ngā taha e rua.
136+x^{2}=-84-x^{2}
Pahekotia te 20x me -20x, ka 0.
136+x^{2}+x^{2}=-84
Me tāpiri te x^{2} ki ngā taha e rua.
136+2x^{2}=-84
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}=-84-136
Tangohia te 136 mai i ngā taha e rua.
2x^{2}=-220
Tangohia te 136 i te -84, ka -220.
x^{2}=\frac{-220}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-110
Whakawehea te -220 ki te 2, kia riro ko -110.
x=\sqrt{110}i x=-\sqrt{110}i
Kua oti te whārite te whakatau.
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Whakareatia te 2 ki te 5, ka 10.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(10+x\right)^{2}.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Tāpirihia te 36 ki te 100, ka 136.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
136+20x+x^{2}=16-\left(10-x\right)^{2}
Whakareatia te 2 ki te 5, ka 10.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(10-x\right)^{2}.
136+20x+x^{2}=16-100+20x-x^{2}
Hei kimi i te tauaro o 100-20x+x^{2}, kimihia te tauaro o ia taurangi.
136+20x+x^{2}=-84+20x-x^{2}
Tangohia te 100 i te 16, ka -84.
136+20x+x^{2}-\left(-84\right)=20x-x^{2}
Tangohia te -84 mai i ngā taha e rua.
136+20x+x^{2}+84=20x-x^{2}
Ko te tauaro o -84 ko 84.
136+20x+x^{2}+84-20x=-x^{2}
Tangohia te 20x mai i ngā taha e rua.
220+20x+x^{2}-20x=-x^{2}
Tāpirihia te 136 ki te 84, ka 220.
220+x^{2}=-x^{2}
Pahekotia te 20x me -20x, ka 0.
220+x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
220+2x^{2}=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+220=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 220}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 220 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 220}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 220}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-1760}}{2\times 2}
Whakareatia -8 ki te 220.
x=\frac{0±4\sqrt{110}i}{2\times 2}
Tuhia te pūtakerua o te -1760.
x=\frac{0±4\sqrt{110}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{110}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{110}i}{4} ina he tāpiri te ±.
x=-\sqrt{110}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{110}i}{4} ina he tango te ±.
x=\sqrt{110}i x=-\sqrt{110}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}