Whakaoti mō x
x = \frac{73}{8} = 9\frac{1}{8} = 9.125
Graph
Tohaina
Kua tāruatia ki te papatopenga
36+\left(16-x\right)^{2}=x^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
36+256-32x+x^{2}=x^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(16-x\right)^{2}.
292-32x+x^{2}=x^{2}
Tāpirihia te 36 ki te 256, ka 292.
292-32x+x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
292-32x=0
Pahekotia te x^{2} me -x^{2}, ka 0.
-32x=-292
Tangohia te 292 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-292}{-32}
Whakawehea ngā taha e rua ki te -32.
x=\frac{73}{8}
Whakahekea te hautanga \frac{-292}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}