Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6^{-3n-3}=216
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(6^{-3n-3})=\log(216)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(-3n-3\right)\log(6)=\log(216)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-3n-3=\frac{\log(216)}{\log(6)}
Whakawehea ngā taha e rua ki te \log(6).
-3n-3=\log_{6}\left(216\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-3n=3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
n=\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.