Whakaoti mō n
n=-2
Tohaina
Kua tāruatia ki te papatopenga
6^{-3n-3}=216
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(6^{-3n-3})=\log(216)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(-3n-3\right)\log(6)=\log(216)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-3n-3=\frac{\log(216)}{\log(6)}
Whakawehea ngā taha e rua ki te \log(6).
-3n-3=\log_{6}\left(216\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-3n=3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
n=\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}