Whakaoti mō x
x=10
x=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1+x\right)^{2}=\frac{726}{6}
Whakawehea ngā taha e rua ki te 6.
\left(1+x\right)^{2}=121
Whakawehea te 726 ki te 6, kia riro ko 121.
1+2x+x^{2}=121
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
1+2x+x^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
-120+2x+x^{2}=0
Tangohia te 121 i te 1, ka -120.
x^{2}+2x-120=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-120
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-120 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-10 b=12
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-10\right)\left(x+12\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=10 x=-12
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+12=0.
\left(1+x\right)^{2}=\frac{726}{6}
Whakawehea ngā taha e rua ki te 6.
\left(1+x\right)^{2}=121
Whakawehea te 726 ki te 6, kia riro ko 121.
1+2x+x^{2}=121
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
1+2x+x^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
-120+2x+x^{2}=0
Tangohia te 121 i te 1, ka -120.
x^{2}+2x-120=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=1\left(-120\right)=-120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-120. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-10 b=12
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-10x\right)+\left(12x-120\right)
Tuhia anō te x^{2}+2x-120 hei \left(x^{2}-10x\right)+\left(12x-120\right).
x\left(x-10\right)+12\left(x-10\right)
Tauwehea te x i te tuatahi me te 12 i te rōpū tuarua.
\left(x-10\right)\left(x+12\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=-12
Hei kimi otinga whārite, me whakaoti te x-10=0 me te x+12=0.
\left(1+x\right)^{2}=\frac{726}{6}
Whakawehea ngā taha e rua ki te 6.
\left(1+x\right)^{2}=121
Whakawehea te 726 ki te 6, kia riro ko 121.
1+2x+x^{2}=121
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
1+2x+x^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
-120+2x+x^{2}=0
Tangohia te 121 i te 1, ka -120.
x^{2}+2x-120=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-120\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-120\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+480}}{2}
Whakareatia -4 ki te -120.
x=\frac{-2±\sqrt{484}}{2}
Tāpiri 4 ki te 480.
x=\frac{-2±22}{2}
Tuhia te pūtakerua o te 484.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{-2±22}{2} ina he tāpiri te ±. Tāpiri -2 ki te 22.
x=10
Whakawehe 20 ki te 2.
x=-\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{-2±22}{2} ina he tango te ±. Tango 22 mai i -2.
x=-12
Whakawehe -24 ki te 2.
x=10 x=-12
Kua oti te whārite te whakatau.
\left(1+x\right)^{2}=\frac{726}{6}
Whakawehea ngā taha e rua ki te 6.
\left(1+x\right)^{2}=121
Whakawehea te 726 ki te 6, kia riro ko 121.
1+2x+x^{2}=121
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
2x+x^{2}=121-1
Tangohia te 1 mai i ngā taha e rua.
2x+x^{2}=120
Tangohia te 1 i te 121, ka 120.
x^{2}+2x=120
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+1^{2}=120+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=120+1
Pūrua 1.
x^{2}+2x+1=121
Tāpiri 120 ki te 1.
\left(x+1\right)^{2}=121
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{121}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=11 x+1=-11
Whakarūnātia.
x=10 x=-12
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}