Whakaoti mō z
z=\frac{7}{15}+\frac{2}{5}i\approx 0.466666667+0.4i
Tohaina
Kua tāruatia ki te papatopenga
15iz-7i=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
15iz=-6+7i
Me tāpiri te 7i ki ngā taha e rua.
z=\frac{-6+7i}{15i}
Whakawehea ngā taha e rua ki te 15i.
z=\frac{\left(-6+7i\right)i}{15i^{2}}
Me whakarea tahi te taurunga me te tauraro o \frac{-6+7i}{15i} ki te wae pohewa i.
z=\frac{\left(-6+7i\right)i}{-15}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{-6i+7i^{2}}{-15}
Whakareatia -6+7i ki te i.
z=\frac{-6i+7\left(-1\right)}{-15}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{-7-6i}{-15}
Mahia ngā whakarea i roto o -6i+7\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
z=\frac{7}{15}+\frac{2}{5}i
Whakawehea te -7-6i ki te -15, kia riro ko \frac{7}{15}+\frac{2}{5}i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}