Aromātai
\frac{2\left(3x^{2}+4\right)}{x^{2}-4}
Tauwehe
\frac{2\left(3x^{2}+4\right)}{x^{2}-4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6+\frac{8\times 4}{\left(x+2\right)\left(x-2\right)}
Me whakarea te \frac{8}{x+2} ki te \frac{4}{x-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{8\times 4}{\left(x+2\right)\left(x-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}.
\frac{6\left(x+2\right)\left(x-2\right)+8\times 4}{\left(x+2\right)\left(x-2\right)}
Tā te mea he rite te tauraro o \frac{6\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)} me \frac{8\times 4}{\left(x+2\right)\left(x-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6x^{2}-12x+12x-24+32}{\left(x+2\right)\left(x-2\right)}
Mahia ngā whakarea i roto o 6\left(x+2\right)\left(x-2\right)+8\times 4.
\frac{6x^{2}+8}{\left(x+2\right)\left(x-2\right)}
Whakakotahitia ngā kupu rite i 6x^{2}-12x+12x-24+32.
\frac{6x^{2}+8}{x^{2}-4}
Whakarohaina te \left(x+2\right)\left(x-2\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}