Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6+\frac{8\times 4}{\left(x+2\right)\left(x-2\right)}
Me whakarea te \frac{8}{x+2} ki te \frac{4}{x-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{8\times 4}{\left(x+2\right)\left(x-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}.
\frac{6\left(x+2\right)\left(x-2\right)+8\times 4}{\left(x+2\right)\left(x-2\right)}
Tā te mea he rite te tauraro o \frac{6\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)} me \frac{8\times 4}{\left(x+2\right)\left(x-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6x^{2}-12x+12x-24+32}{\left(x+2\right)\left(x-2\right)}
Mahia ngā whakarea i roto o 6\left(x+2\right)\left(x-2\right)+8\times 4.
\frac{6x^{2}+8}{\left(x+2\right)\left(x-2\right)}
Whakakotahitia ngā kupu rite i 6x^{2}-12x+12x-24+32.
\frac{6x^{2}+8}{x^{2}-4}
Whakarohaina te \left(x+2\right)\left(x-2\right).