Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

18+\left(2x+4\right)x=24
Whakareatia ngā taha e rua o te whārite ki te 3.
18+2x^{2}+4x=24
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+4 ki te x.
18+2x^{2}+4x-24=0
Tangohia te 24 mai i ngā taha e rua.
-6+2x^{2}+4x=0
Tangohia te 24 i te 18, ka -6.
2x^{2}+4x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{-4±\sqrt{64}}{2\times 2}
Tāpiri 16 ki te 48.
x=\frac{-4±8}{2\times 2}
Tuhia te pūtakerua o te 64.
x=\frac{-4±8}{4}
Whakareatia 2 ki te 2.
x=\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{-4±8}{4} ina he tāpiri te ±. Tāpiri -4 ki te 8.
x=1
Whakawehe 4 ki te 4.
x=-\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{-4±8}{4} ina he tango te ±. Tango 8 mai i -4.
x=-3
Whakawehe -12 ki te 4.
x=1 x=-3
Kua oti te whārite te whakatau.
18+\left(2x+4\right)x=24
Whakareatia ngā taha e rua o te whārite ki te 3.
18+2x^{2}+4x=24
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+4 ki te x.
2x^{2}+4x=24-18
Tangohia te 18 mai i ngā taha e rua.
2x^{2}+4x=6
Tangohia te 18 i te 24, ka 6.
\frac{2x^{2}+4x}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=\frac{6}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=3
Whakawehe 6 ki te 2.
x^{2}+2x+1^{2}=3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3+1
Pūrua 1.
x^{2}+2x+1=4
Tāpiri 3 ki te 1.
\left(x+1\right)^{2}=4
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.