Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6\times \frac{3ab}{4c}}{\frac{2a}{12c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{6\times 3ab}{4c}}{\frac{2a}{12c}}
Tuhia te 6\times \frac{3ab}{4c} hei hautanga kotahi.
\frac{\frac{3\times 3ab}{2c}}{\frac{2a}{12c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{3\times 3ab}{2c}}{\frac{a}{6c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3\times 3ab\times 6c}{2ca}
Whakawehe \frac{3\times 3ab}{2c} ki te \frac{a}{6c} mā te whakarea \frac{3\times 3ab}{2c} ki te tau huripoki o \frac{a}{6c}.
3\times 3\times 3b
Me whakakore tahi te 2ac i te taurunga me te tauraro.
9\times 3b
Whakareatia te 3 ki te 3, ka 9.
27b
Whakareatia te 9 ki te 3, ka 27.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{6\times \frac{3ab}{4c}}{\frac{2a}{12c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{6\times 3ab}{4c}}{\frac{2a}{12c}})
Tuhia te 6\times \frac{3ab}{4c} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{3\times 3ab}{2c}}{\frac{2a}{12c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{3\times 3ab}{2c}}{\frac{a}{6c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{3\times 3ab\times 6c}{2ca})
Whakawehe \frac{3\times 3ab}{2c} ki te \frac{a}{6c} mā te whakarea \frac{3\times 3ab}{2c} ki te tau huripoki o \frac{a}{6c}.
\frac{\mathrm{d}}{\mathrm{d}b}(3\times 3\times 3b)
Me whakakore tahi te 2ac i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(9\times 3b)
Whakareatia te 3 ki te 3, ka 9.
\frac{\mathrm{d}}{\mathrm{d}b}(27b)
Whakareatia te 9 ki te 3, ka 27.
27b^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
27b^{0}
Tango 1 mai i 1.
27\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
27
Mō tētahi kupu t, t\times 1=t me 1t=t.