Aromātai
27b
Kimi Pārōnaki e ai ki b
27
Tohaina
Kua tāruatia ki te papatopenga
\frac{6\times \frac{3ab}{4c}}{\frac{2a}{12c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{6\times 3ab}{4c}}{\frac{2a}{12c}}
Tuhia te 6\times \frac{3ab}{4c} hei hautanga kotahi.
\frac{\frac{3\times 3ab}{2c}}{\frac{2a}{12c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{3\times 3ab}{2c}}{\frac{a}{6c}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3\times 3ab\times 6c}{2ca}
Whakawehe \frac{3\times 3ab}{2c} ki te \frac{a}{6c} mā te whakarea \frac{3\times 3ab}{2c} ki te tau huripoki o \frac{a}{6c}.
3\times 3\times 3b
Me whakakore tahi te 2ac i te taurunga me te tauraro.
9\times 3b
Whakareatia te 3 ki te 3, ka 9.
27b
Whakareatia te 9 ki te 3, ka 27.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{6\times \frac{3ab}{4c}}{\frac{2a}{12c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{6\times 3ab}{4c}}{\frac{2a}{12c}})
Tuhia te 6\times \frac{3ab}{4c} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{3\times 3ab}{2c}}{\frac{2a}{12c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{3\times 3ab}{2c}}{\frac{a}{6c}})
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{3\times 3ab\times 6c}{2ca})
Whakawehe \frac{3\times 3ab}{2c} ki te \frac{a}{6c} mā te whakarea \frac{3\times 3ab}{2c} ki te tau huripoki o \frac{a}{6c}.
\frac{\mathrm{d}}{\mathrm{d}b}(3\times 3\times 3b)
Me whakakore tahi te 2ac i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(9\times 3b)
Whakareatia te 3 ki te 3, ka 9.
\frac{\mathrm{d}}{\mathrm{d}b}(27b)
Whakareatia te 9 ki te 3, ka 27.
27b^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
27b^{0}
Tango 1 mai i 1.
27\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
27
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}