Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}=90
Whakareatia te x ki te x, ka x^{2}.
x^{2}=\frac{90}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}=18
Whakawehea te 90 ki te 5, kia riro ko 18.
x=3\sqrt{2} x=-3\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5x^{2}=90
Whakareatia te x ki te x, ka x^{2}.
5x^{2}-90=0
Tangohia te 90 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-90\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 0 mō b, me -90 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-90\right)}}{2\times 5}
Pūrua 0.
x=\frac{0±\sqrt{-20\left(-90\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{0±\sqrt{1800}}{2\times 5}
Whakareatia -20 ki te -90.
x=\frac{0±30\sqrt{2}}{2\times 5}
Tuhia te pūtakerua o te 1800.
x=\frac{0±30\sqrt{2}}{10}
Whakareatia 2 ki te 5.
x=3\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±30\sqrt{2}}{10} ina he tāpiri te ±.
x=-3\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±30\sqrt{2}}{10} ina he tango te ±.
x=3\sqrt{2} x=-3\sqrt{2}
Kua oti te whārite te whakatau.