Whakaoti mō x
x = \frac{\sqrt{718} + 50}{9} \approx 8.532835779
x = \frac{50 - \sqrt{718}}{9} \approx 2.578275332
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x\times 10-9xx=198
Whakareatia ngā taha e rua o te whārite ki te 2.
100x-9xx=198
Whakareatia te 10 ki te 10, ka 100.
100x-9x^{2}=198
Whakareatia te x ki te x, ka x^{2}.
100x-9x^{2}-198=0
Tangohia te 198 mai i ngā taha e rua.
-9x^{2}+100x-198=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 100 mō b, me -198 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+36\left(-198\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-100±\sqrt{10000-7128}}{2\left(-9\right)}
Whakareatia 36 ki te -198.
x=\frac{-100±\sqrt{2872}}{2\left(-9\right)}
Tāpiri 10000 ki te -7128.
x=\frac{-100±2\sqrt{718}}{2\left(-9\right)}
Tuhia te pūtakerua o te 2872.
x=\frac{-100±2\sqrt{718}}{-18}
Whakareatia 2 ki te -9.
x=\frac{2\sqrt{718}-100}{-18}
Nā, me whakaoti te whārite x=\frac{-100±2\sqrt{718}}{-18} ina he tāpiri te ±. Tāpiri -100 ki te 2\sqrt{718}.
x=\frac{50-\sqrt{718}}{9}
Whakawehe -100+2\sqrt{718} ki te -18.
x=\frac{-2\sqrt{718}-100}{-18}
Nā, me whakaoti te whārite x=\frac{-100±2\sqrt{718}}{-18} ina he tango te ±. Tango 2\sqrt{718} mai i -100.
x=\frac{\sqrt{718}+50}{9}
Whakawehe -100-2\sqrt{718} ki te -18.
x=\frac{50-\sqrt{718}}{9} x=\frac{\sqrt{718}+50}{9}
Kua oti te whārite te whakatau.
10x\times 10-9xx=198
Whakareatia ngā taha e rua o te whārite ki te 2.
100x-9xx=198
Whakareatia te 10 ki te 10, ka 100.
100x-9x^{2}=198
Whakareatia te x ki te x, ka x^{2}.
-9x^{2}+100x=198
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9x^{2}+100x}{-9}=\frac{198}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\frac{100}{-9}x=\frac{198}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}-\frac{100}{9}x=\frac{198}{-9}
Whakawehe 100 ki te -9.
x^{2}-\frac{100}{9}x=-22
Whakawehe 198 ki te -9.
x^{2}-\frac{100}{9}x+\left(-\frac{50}{9}\right)^{2}=-22+\left(-\frac{50}{9}\right)^{2}
Whakawehea te -\frac{100}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{50}{9}. Nā, tāpiria te pūrua o te -\frac{50}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=-22+\frac{2500}{81}
Pūruatia -\frac{50}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=\frac{718}{81}
Tāpiri -22 ki te \frac{2500}{81}.
\left(x-\frac{50}{9}\right)^{2}=\frac{718}{81}
Tauwehea x^{2}-\frac{100}{9}x+\frac{2500}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{9}\right)^{2}}=\sqrt{\frac{718}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{50}{9}=\frac{\sqrt{718}}{9} x-\frac{50}{9}=-\frac{\sqrt{718}}{9}
Whakarūnātia.
x=\frac{\sqrt{718}+50}{9} x=\frac{50-\sqrt{718}}{9}
Me tāpiri \frac{50}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}