Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x^{2}\times 6=23
Whakareatia te x ki te x, ka x^{2}.
30x^{2}=23
Whakareatia te 5 ki te 6, ka 30.
x^{2}=\frac{23}{30}
Whakawehea ngā taha e rua ki te 30.
x=\frac{\sqrt{690}}{30} x=-\frac{\sqrt{690}}{30}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
5x^{2}\times 6=23
Whakareatia te x ki te x, ka x^{2}.
30x^{2}=23
Whakareatia te 5 ki te 6, ka 30.
30x^{2}-23=0
Tangohia te 23 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 30\left(-23\right)}}{2\times 30}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 30 mō a, 0 mō b, me -23 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 30\left(-23\right)}}{2\times 30}
Pūrua 0.
x=\frac{0±\sqrt{-120\left(-23\right)}}{2\times 30}
Whakareatia -4 ki te 30.
x=\frac{0±\sqrt{2760}}{2\times 30}
Whakareatia -120 ki te -23.
x=\frac{0±2\sqrt{690}}{2\times 30}
Tuhia te pūtakerua o te 2760.
x=\frac{0±2\sqrt{690}}{60}
Whakareatia 2 ki te 30.
x=\frac{\sqrt{690}}{30}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{690}}{60} ina he tāpiri te ±.
x=-\frac{\sqrt{690}}{30}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{690}}{60} ina he tango te ±.
x=\frac{\sqrt{690}}{30} x=-\frac{\sqrt{690}}{30}
Kua oti te whārite te whakatau.