Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(56x-3x^{2}+12)
Pahekotia te 59x me -3x, ka 56x.
-3x^{2}+56x+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-56±\sqrt{56^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-56±\sqrt{3136-4\left(-3\right)\times 12}}{2\left(-3\right)}
Pūrua 56.
x=\frac{-56±\sqrt{3136+12\times 12}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-56±\sqrt{3136+144}}{2\left(-3\right)}
Whakareatia 12 ki te 12.
x=\frac{-56±\sqrt{3280}}{2\left(-3\right)}
Tāpiri 3136 ki te 144.
x=\frac{-56±4\sqrt{205}}{2\left(-3\right)}
Tuhia te pūtakerua o te 3280.
x=\frac{-56±4\sqrt{205}}{-6}
Whakareatia 2 ki te -3.
x=\frac{4\sqrt{205}-56}{-6}
Nā, me whakaoti te whārite x=\frac{-56±4\sqrt{205}}{-6} ina he tāpiri te ±. Tāpiri -56 ki te 4\sqrt{205}.
x=\frac{28-2\sqrt{205}}{3}
Whakawehe -56+4\sqrt{205} ki te -6.
x=\frac{-4\sqrt{205}-56}{-6}
Nā, me whakaoti te whārite x=\frac{-56±4\sqrt{205}}{-6} ina he tango te ±. Tango 4\sqrt{205} mai i -56.
x=\frac{2\sqrt{205}+28}{3}
Whakawehe -56-4\sqrt{205} ki te -6.
-3x^{2}+56x+12=-3\left(x-\frac{28-2\sqrt{205}}{3}\right)\left(x-\frac{2\sqrt{205}+28}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{28-2\sqrt{205}}{3} mō te x_{1} me te \frac{28+2\sqrt{205}}{3} mō te x_{2}.
56x-3x^{2}+12
Pahekotia te 59x me -3x, ka 56x.