Whakaoti mō h
h = \frac{42 \sqrt{10}}{5} \approx 26.563132345
h = -\frac{42 \sqrt{10}}{5} \approx -26.563132345
Tohaina
Kua tāruatia ki te papatopenga
588\times 48=4\times 10h^{2}
Me whakarea ngā taha e rua ki te 48.
28224=4\times 10h^{2}
Whakareatia te 588 ki te 48, ka 28224.
28224=40h^{2}
Whakareatia te 4 ki te 10, ka 40.
40h^{2}=28224
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}=\frac{28224}{40}
Whakawehea ngā taha e rua ki te 40.
h^{2}=\frac{3528}{5}
Whakahekea te hautanga \frac{28224}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
h=\frac{42\sqrt{10}}{5} h=-\frac{42\sqrt{10}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
588\times 48=4\times 10h^{2}
Me whakarea ngā taha e rua ki te 48.
28224=4\times 10h^{2}
Whakareatia te 588 ki te 48, ka 28224.
28224=40h^{2}
Whakareatia te 4 ki te 10, ka 40.
40h^{2}=28224
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40h^{2}-28224=0
Tangohia te 28224 mai i ngā taha e rua.
h=\frac{0±\sqrt{0^{2}-4\times 40\left(-28224\right)}}{2\times 40}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 40 mō a, 0 mō b, me -28224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\times 40\left(-28224\right)}}{2\times 40}
Pūrua 0.
h=\frac{0±\sqrt{-160\left(-28224\right)}}{2\times 40}
Whakareatia -4 ki te 40.
h=\frac{0±\sqrt{4515840}}{2\times 40}
Whakareatia -160 ki te -28224.
h=\frac{0±672\sqrt{10}}{2\times 40}
Tuhia te pūtakerua o te 4515840.
h=\frac{0±672\sqrt{10}}{80}
Whakareatia 2 ki te 40.
h=\frac{42\sqrt{10}}{5}
Nā, me whakaoti te whārite h=\frac{0±672\sqrt{10}}{80} ina he tāpiri te ±.
h=-\frac{42\sqrt{10}}{5}
Nā, me whakaoti te whārite h=\frac{0±672\sqrt{10}}{80} ina he tango te ±.
h=\frac{42\sqrt{10}}{5} h=-\frac{42\sqrt{10}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}