Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

588\times 48=4\times 10h^{2}
Me whakarea ngā taha e rua ki te 48.
28224=4\times 10h^{2}
Whakareatia te 588 ki te 48, ka 28224.
28224=40h^{2}
Whakareatia te 4 ki te 10, ka 40.
40h^{2}=28224
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}=\frac{28224}{40}
Whakawehea ngā taha e rua ki te 40.
h^{2}=\frac{3528}{5}
Whakahekea te hautanga \frac{28224}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
h=\frac{42\sqrt{10}}{5} h=-\frac{42\sqrt{10}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
588\times 48=4\times 10h^{2}
Me whakarea ngā taha e rua ki te 48.
28224=4\times 10h^{2}
Whakareatia te 588 ki te 48, ka 28224.
28224=40h^{2}
Whakareatia te 4 ki te 10, ka 40.
40h^{2}=28224
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40h^{2}-28224=0
Tangohia te 28224 mai i ngā taha e rua.
h=\frac{0±\sqrt{0^{2}-4\times 40\left(-28224\right)}}{2\times 40}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 40 mō a, 0 mō b, me -28224 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\times 40\left(-28224\right)}}{2\times 40}
Pūrua 0.
h=\frac{0±\sqrt{-160\left(-28224\right)}}{2\times 40}
Whakareatia -4 ki te 40.
h=\frac{0±\sqrt{4515840}}{2\times 40}
Whakareatia -160 ki te -28224.
h=\frac{0±672\sqrt{10}}{2\times 40}
Tuhia te pūtakerua o te 4515840.
h=\frac{0±672\sqrt{10}}{80}
Whakareatia 2 ki te 40.
h=\frac{42\sqrt{10}}{5}
Nā, me whakaoti te whārite h=\frac{0±672\sqrt{10}}{80} ina he tāpiri te ±.
h=-\frac{42\sqrt{10}}{5}
Nā, me whakaoti te whārite h=\frac{0±672\sqrt{10}}{80} ina he tango te ±.
h=\frac{42\sqrt{10}}{5} h=-\frac{42\sqrt{10}}{5}
Kua oti te whārite te whakatau.