Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{575\left(-x+1\right)^{2}}{575}=\frac{822}{575}
Whakawehea ngā taha e rua ki te 575.
\left(-x+1\right)^{2}=\frac{822}{575}
Mā te whakawehe ki te 575 ka wetekia te whakareanga ki te 575.
-x+1=\frac{\sqrt{18906}}{115} -x+1=-\frac{\sqrt{18906}}{115}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-x+1-1=\frac{\sqrt{18906}}{115}-1 -x+1-1=-\frac{\sqrt{18906}}{115}-1
Me tango 1 mai i ngā taha e rua o te whārite.
-x=\frac{\sqrt{18906}}{115}-1 -x=-\frac{\sqrt{18906}}{115}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
-x=\frac{\sqrt{18906}}{115}-1
Tango 1 mai i \frac{\sqrt{18906}}{115}.
-x=-\frac{\sqrt{18906}}{115}-1
Tango 1 mai i -\frac{\sqrt{18906}}{115}.
\frac{-x}{-1}=\frac{\frac{\sqrt{18906}}{115}-1}{-1} \frac{-x}{-1}=\frac{-\frac{\sqrt{18906}}{115}-1}{-1}
Whakawehea ngā taha e rua ki te -1.
x=\frac{\frac{\sqrt{18906}}{115}-1}{-1} x=\frac{-\frac{\sqrt{18906}}{115}-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x=-\frac{\sqrt{18906}}{115}+1
Whakawehe \frac{\sqrt{18906}}{115}-1 ki te -1.
x=\frac{\sqrt{18906}}{115}+1
Whakawehe -\frac{\sqrt{18906}}{115}-1 ki te -1.
x=-\frac{\sqrt{18906}}{115}+1 x=\frac{\sqrt{18906}}{115}+1
Kua oti te whārite te whakatau.